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Abstract
- Partitioning and scheduling techniques are necessary to
implement parallel languages on  multiprocessors,

Multiprocessor performance i3 maximized when parailelism
betw~rr; tasks is optimally traded off with communication and
synclr-zization overhead.  We present compile-time
partitioning and scheduling techniques to achieve this trade-
off.

1. Introduction

- One of the biggest challenges facing compiler vrriters is to
efficiently implement programming laoguages on
multiprocessors. We need to find compilation techniques for
general-purpose parallcl languages; these techniques should
be adaptable to a wide range of multiprocessor architectures.

There are three fundamental problems to be solved when
compiling a program for parallel execution oo a
multiprocessor:

1. 1dentifying potential parallelism,
2. Partitioning the program into sequential tasks,
3.Schedul.mg the concum:ut execution of these 1asks,

Cor

We tddrell the lauer lwo problems and suggesgthat &hcy '

be solved at compile-time instead of run-time for lpplicalions
with fairly predictable execution nmes. In these cases the
benefits are tremendous. A global, compile-hme anslysis
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reduces communication overhead for the entire program; such
an analysis cannot be done on the fly at run-time, Compile-
time partitioning and scheduling also climinates task
scheduling overhead and load balancing overhead at run-time,

A compile-time partitioner-cum-scheduler has been
implemented to process program graphs in the intermediate
language, IF1[21). IF]l represents computation as dataflow
graphs, as described later io Section 6. A list of target
parameters (e.g. number of processors, communication
overhead, inter-processor distances) drives the partitioning for
a given multiprocessor architecture. Using a front-end from
SISAL (15) to IFl, we apply this system to different
benchmark programs written in the single-assigniment
language SISAL. Like other functional languages, £.S4L i
implicitly parallel; this eliminates the peed ey
parallelism from the program. However, our approach is
spplicable o0 any environment where a r.ogrzin xr2h
representation can be obtained.

2, Overview of our approach

Our approach is to expose enough parallelism in the "main
program” function graph and then assign computations o
proccssors 30 as to minimize the parallel exccution time,
while considering communication overhead. As shown in
Figure 2-1,4neFe are four basic sieps in this process:

1. Cost_Assignment: Traverse the program graph and
assign  execution time costs 1o nodes and
communication size costs to edges.

2. Graph Expansion: Expand the graph so that the main
function contlains sufficicat parallelism to keep all
processors busy, Nodes in the expanded program
graph are mapped to tasks.

3. Internalization: Decide which tasks must go together
on the same processor, even if other processors are
available, This intemalizes their communication and
eliminates its overhead, at the expense of
scquentializing the tasks,

4, mccssor Amgnmcn Assign tasks to proce;sors 1o
as to minimize parallel execution time. Tasks in the
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same block of the intermalized partition must be
assigued (o the same processor.,

Program Graph

Cost Assignment

Program Graph + Costs

Graph Expansion

Expanded Program Graph (Tasks)

Internalization

Intemnalized Partition

b

Processor Assignment

Expanded Program Graph
with Processor Assignments

Figure 2-1: Overview

Note thal we rely heavily on compile-time estimates of
communication and computation costs. These costs drive the
expansion, internalization and scheduling of paralle] tasks.
We have found thal our cost estimaies yield good partitions
for a range of programs and input data.

These four phases for compile-time¢ partitioning azd
scheduling are described in later sections. We begin with a
discussion of multiprocesso, models 2nd real multiprocessors.

3, Multiprocessor Scheduling Theory
Let’s start by examining the iraditional model for
multiprocessor scheduling, which consists of:

o P identical, independent processors.

» A setof N tasks, T = {T,, ..., Ty} with exccution times

11. reny tN.
e A panialorder »on T.

The partial order describes precedence constraints on the

tasks, so that T, — 'l‘j forces 'I‘j to start only after T, has
completed execution.

The problem is to find a valid schedule with the smallest
completion time. This problem (along with several restricted
versions) has been shown to be NP-complete [14]). However,
there exist cfficieat scheduling algorithms that generate
schedules with a worst-case performance bound of 2, relative
10 an optimal schedule [11]. Thus the NP-completeness of the
scheduling problem is not an impediment to achieving linear
speed-up in multiprocessors.

This model is inadequate for our purposc because it ignores
the overhcad of inter-processor synchropization and
communication. Most schemes for considering
communication overhead do so by separately maximizing
parallelism and minimizing communication. We believe that
these parameters should be combined into a single objective

. function. The next section shows how we extend this model

1o incorporate communication costs.

4. Modelling Communication Costs

Communication costs are represented by a communication
matrix. C[i,j] is the size of communication (in bytes, say)
from task T, to T. For simplicity, we assume that
communication only occurs along precedence edges, though
all precedence edges need mnot have an associated
communication. The data along a communication edge is
only available to the consumer after the producer has
completed execution. We also define an inter-processor
distance matrix; D{k,1] gives the communication distance
(number of hops) between processors k and 1. This is a
property of the multiprocessor rather than the tasks.

Communication overhead in a multiprocessor has two
components:

1. Processor component - the duration for which a
processor pariicipates in its communication.

2. Delay component - the fraction of communication
time during which the producer and consumer
processors are frce to execute other tasks.

Let w(i) be the processor to which task T, is assigned. The
communication overhead for each non-local edge from T, to
Tj (i.e. m(i) # n(j)) is modeled as:

1, Processrr component - add &{Cli,j}, D[n(i),x(j)]) 10
the cxecution time of task T, and
p(Cli.;}, DIn(i).m()]) to the exccution time oij.

2. Delay component - tequire that T, not be able to start
il Clij), Dn(i),n()) time has elapsed afier T,
~o-mpleted execution.

p, w and © are simple functions for the cosis of rcading
inputs, writing outputs and communication delay respectively.
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They convert communication si2e to execution time units for
the target multiprocessor. So far, we have used functions of
the form K, + K,xClij}xD(n(i),n(j)], where K, and K, are
constants.

We igoore the effect of communication demand on
commupication overhead in this model. This is valid when
the demand is less than the available bandwidth. If contention
for communication resources is to be considered, it can be
approximated by using average overhead values.

Synchropization between tasks is modeled by =z
synchronization relation (boolean matrix) S. The pair <ij> is
in § if task T, must synchronize and wait for task T)'s
completion. It would be safe to make S the same as the
precedence relation —, but would be inefficient because — is
a partial order and contains transitive edges which lead to
unnecessary synchronizations. The communication matrix
does not entirely determine the synchronization relation,
because some synchronizations are due to control
dependencies. Besides, the commupication matrix can also
have transitive edges. So, for efficiency and generality, we
represent synchronization by a separate relation.

Each pair <ij> in 5 adds to the execution times of tasks T,
and T; due to signal and wait operations respectively. The
execution cost used for a wair is actually the cost of a
successful wair. Time spent spinning in a busy-wait loop is
considered to be idle time and is not added ‘o the task's
cxecution time.

5. Real Multiprocessors

Multiprocessors are general-purpase, asynchronous, MIMD
parallel machines. They can be classified as being “tightly
coupled” or "loosely coupled”. Tightly coupled
multiprocessors (eg. -Sequent [19], Encore [§),
Ultracomputer [10], Cm* [12]) communicate through a shared
memory. Loosely coupled multiprocessors (e.g. the Cosmic
Cube (18]) communicate by exchanging messages. Our
model is designed to be troctable on this wide class of
architectures and we discuss how some of these machines are
modeled in our system.

Machines like the Sequert and Eocore communicate
through a siogle bus comnected to a thared memory and
individual prccossor caches. The communication overhead
copsists entirely of its processor componcnt, since the
processors are directly involved in accessing the shared
memcry. Also, the distance matrix is uniform, so that D(k,1)
= 1 for all pairs of processors. Functions p and c. for the
processor component represent the time taken w respectively
read from of write W the sharcé memory. Both machines use
write-through caches and invalidating snoopy caches.

WHRIEINMEFATFANEMTET T W "N ATFETyFR FRvERTErw-

Because they use invalidation, the value of p is the cost of a
cache miss (i.. a main memory access - on the order of 5-10
cycles). Because writes are buffered and a write-through
cache is used, writes will cost one cycle when there is no
contention. Thus, the value of ® depends primarily on bus
and main memory traffic. Bus contention increases the cost
to read shared memory because cache misses take longer to
satisfy; it increases the cost to write shared memory, because
delays may cause write stalls.

Synchronization costs differ on these machines because
they use different hardware mechanisms for synchronization.
The Sequent has 64 hardware “gates” that can be uscd to
consure mutual exclusion, making synchronization cheap, The
Encore has a test-and-set instruction. The difficuity in
accurately modeling such machines is that the cost of various
operations (reading and writing shared data and
synchronization) depends on the amount of coatention for
shared resources,

A singie bus architecture is fcasible for only a small
number of processors. Interconnection networks are used to
support more processors in shared-memory machines like the
Ultracomputer, Communication and synchronization
overhead is modeled in basically the same way as single bus
architectures. There are two important differences: the time to
access shared memory increases with the processor count
(because of the interconnection network delay), and the
communication costs are less affected by contention.

Arother important class of machines are those using point-
to-point comunication. These include the Cosmic Cube, the
Intel Advanced Scientific Processor and the NCube machine.
All of these machines use a boolean N-cube interconnect,
which defines the distance matrix, Since these machines use a
‘“message passing’’ approach we can easily model their
communication propertics. Assuming that communication
contention is negligible, the following table summarizes the
properties of the Cosmic Cube and Intel cube. The processor
component is for the initiating processor and is given as X +
Y, where X is the start-up and Y is the cost per 100 bytes,
both in milliseconds. The delay component is in milliseconds
per hop for each 100 bytes. Packetization introduces a
nonlinearity in communicuiicn costs, but we ignore this
effect.

Processor Delay ' .

Machine Component Component 1 ]
Cosniic Cube 1.5+04 04 -

Intet Cube 6.0+008 0.08 _—

As we have indicated, the primary limitation of this modcl
is its inability 1o deal with contention for communication or
odes
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synchronization resources. As we measure more problems
running on real machines, we believe that we can refine the
model to realistically accommodate such issues.

Having discussed the target architectures, let’'s now
examine the intermediate language uscd in our system.

6. IFt Program Graphs

Owr compilation system operates on a graphical
representation of programs, namely IF1{[21]. IFl is an
iptermediate form for applicative languages. It is strongly

based on the features of single-assignment languages
SISAL [15]) and VAL [1].

An IFl program is a hicrarcchy of acyclic dataflow
graphs [7]; the nodes denote operations and the edges carry
data. Nodes are cither simple or compound. A simple node’s
outputs are direct functions of its inputs. IF1 has about 50
simple nodes, e.g. Plus, AmayCatepate, FunctionCall. A
compound node contains subgraphs and its outpuis depend on
the interaction between these subgraphs. The following table
lists the five compound nodes available in IFl. These
compound nodes obviate the need for labels, goto’s and
cycles in the program graph.

Compound Node Subgraphs
Select Selector, Alternatives
TagCase Altematives (for Ugion)
Forall Generator, Body, Results
While, Until Iait, Test, Body, Returns

Nodes have numbered ports connected by edges. An edge
contains the node and pori numbers of its producer and
consumer. It also contains an optional type number, which is
used for strongly typed languages like SISAL. Literals are
special cdges used for constant values. A literal has no
producer - its value is given by a string. Ail data is carried by
edges. No variables or memory locations are used.

Basic types include boolean, character, intcger, real and
double. Arrays, strearas, records and unions are used to
construct morec compjex types. Arrays are dynamically
extendible. Nodes and edges in IF1 can use pragmas lo carry
additional information. We us¢ pragmas to siore profile-
based frequency counts, communication and computation
costs, graph partitions and processor assignments.

This program graph representation is well suited for
compile-time  partitioning and scheduling. However,
gencration of sequential machine code is more complicated
than from traditional, sequential intermediate languages. It is
imperative to avoid unnecessary copying when an update-in-
place is possible. This effectively coalesces data on input and

output edges to be the same "variable”. A few research
projects are under way to address this problem. The
SISAL [15] project includes code generation from IF1 for the
VAX 780 and Cray-2 architectures. A project is under way at
Stanford to translate SAL[6] graphs (similar to IF1) to
U-code [20]. Our partitioner will benefit from all advances in
this field, as sequential code generation and optimization
techniques can be applied to intra-task computations.

7. Cost Assignment

The first step in compile-time partitioning and scheduling
is to estimate computation and communication costs in the
program. Communication costs are determined by examining
the deta type of an edge and assessing its size in an
appropriate unit (e.g. bytes). Estimation of node execution
times is more difficult and is undecidable in general. The
unknown paramelers are:

o The frequency distribution of subgraphs in a compound
node (e.g. number of iterations for a While Body,
probability distribution of Allernatives in a Select)

¢ Array size for nodes that operate on entire arrays.
¢ Recursion depth for recursive function calls:

Average node execution times are determined by using
average values for these frequency parameters. These
frequency values can be estimated using simpie rules of
thumb, can be provided by the programmer through pragmas,
or can be derived from profile information, Our current
implementation uses profile data.

Given these parameters, it is a straightforward task to
compute the cost of a node from the cost of its components
via a depth-first traversal of the program graph. The cost of a
function call is determined by the cost assigned to the callee.
The strongly connected componeats (SCC's) in the call graph
reveal groups of mutually recursive functions. The recursion
depth estimate is used to evaluate the costs of functions in the
same SCC. The reduced inter-SCC graph is acyclic and is
traversed in topological order so that the callee’s costs are
assigned before processing the caller.

8. Graph Expansion

Given exccution time costs, the next siep is to create a set
of paralle] tasks. This phase begins by considering the body
of the "main program" function to be a single task and
proceeds by recursively expanding the curreat tasks to revcal
more parallelism. A task containing an entire acyclic
dataflow graph can be replaced by a set of new tasks - one for
cach node in the graph. A task corresponding 1o a function
call node can be replaced by tasks for nodes in the callec’s
function body, as in conventional procedure integration.
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A Forali node is special because we know that all its
iterations can be executed in parallel. Thus a task for a Forall
pode caa be replaced by S+2 new tasks - a Scatter task, S
sub-Forall tasks and a Gather task. The value of S is
determined in part by F, the number of iterations in the
original Forall. Assuming tha: all iterations take the same
time, the smallest S that yields an optimal completion time on
P processors is| F/[F/P1 1. This makes S = P for large F.

A task for a non-Forall compound node is replaced by a
task for each of its subgraphs. These subgraphs are totally
ordered by control dependencies, accoiding o the semantics
of the compound node. This ordering avoids the possibility of
wasted work through eager evaluation of (say) Alternative
subgraphs in a Select node, Iastead, the Alternative will coly
start after the Selector has been evaluated, at which time it is
known which Alternative should be evaluated. It's possible to
perform a Parafrase-styie [13] dependency analysis on While
expressions and try to convert them to Forall's. This would
be a compatible pre-pass to our partitioning system. We have
not pursued that approach because we assume that the
programs were written with 2 view to parallelism, and leave 1t
to the programmer to usc Forall’s where appropriate.

We'd like the final task system to:

¢ Contain sufficient parallelism for the given number of
processors,
¢ Not have an impractically large number of tasks (e.g.
one task per jostruction is t00 many!).
Both objectives can be cooveniently quantified using costs.
The task system will have sufficient parallelism if no task is a
borleneck. Task T, is a bottleneck when all tasks that can be
executed in parallel with it together contain insufficient work
to keep P-1 processors busy during T,’s execution, i..

Iy, paclier o, COSUT < (P-1) x cosi(T)
Only boutleneck nodes are considered for further expansion,

The problem of determining parallel tasks is equivalent to
finding the transitive closure of the graph’s adjacency matrix,
Traositive closure algorithms have a worst-case execution
time between O(NZ5) and O(N?), making them impractical
for large programs(S]. We use a divide-and-conquer
approach on the hicrarchical structure of IF1 program graphs
to compute the path relation more efficicotly. It is only
pecessary to use the O(N?) algorithm on dataflow graphs at
cach level. Their path relations are then cfficicntly combined
in 2 depth-first traversal of the entire hicrarchy. This
comrespon Is 1o the notion of path-preserving homomorphic
graph st tures {17), and makes it practical to determine the
path rei. . . afor a large program graph.

To & .c areasonable limit on the pumber of tasks, we
emp: . Sranularity Threshold Factor, €. Any computalion

with execution time less than € x (Total Program Cost) / P is
considered not worthwhile fer further expansion. This
threshold value controls task granularity - 0.00] is a typical
value for €. A smaller value of € usually increases the number
of tagks and hence the execution time for compile-time
partitioning. Programs with sufficient coarse-grain
parallelism are unaffected by &; a few expansions remove all
bottleneck nodes causing the expansion process to terminate
before tasks reach the granularity threshold size.

After task expansion, there is scope for further economy on
the number of tasks by merging small tasks when their total
cost is less than the threshold value. These small tasks are
usually simple nodes (e.g. Plus, ArmrayBuild) that were
exposed along with larger computations during task
expansion. By merging tasks, we map a set of IF1 nodes to a
single task. This set must:

e Have a total execution time that's smaller than the
threshald value. ’

e Form a convex subgraph of the original precedence
graph so that the reduced precedence graph with the
single merged task will still be acyclic. A simple way
to form convex subgraphs is by picking intervals on any
linear comipletion of the precedence graph.

o Form a connected subgraph so that it does not destroy
any parallelism outside the merged task.

Task expansion and task merging partition the program
graph nodes into tasks. Each task should either be a non-
bottleneck or have a smaller exccution time than the threshold
value. A task that satisfies neither property is expanded, if
possible. Tasks are merged if their total cost is sti!l less than
the threshold value. Both expansion and merging can be
incorporated in a single depth-first traversal of the program
graph. At each level, all subcomnputations are first recursively
processed, which determines the expanded nodes. A second
pass at the same level performs the merging, and thena returns
to the parent level.

9. Internalization Pre-pass

Once the task boundaries have been established, the
problem is represented in terms of our model for
multiprocessor scheduling with communication. We have
tasks with execution times and communication edges. A
single pass scheduling algorithm is unsuitable for handling
communication costs. For example, in Figure 9-1, if tasks A
and B are assigned to differcnt processors, a single pass
algorithm is later on forced to make one of C; or C, non-
local, and incur its overhead. This is inevitable no matter how
large C, or C, may be. It could be avoided by backtracking
on previous assignments, but that would be too inefficient.
Instead, we first perform an Internalization pass that partitions
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tesks into blocks, so that all tasks in the same block must be
assigned to the same processor. After Intcrnalization, a single
pass Processor Assignment algorithm can be ussd to assign
internalized task blocks 0 processors.

Processor 1 Processor 2

Figure 9-1: Counter-example for one-pass scheduling

The Internalization problem is to find a partition that
minimizes the critical path length of the task system, ie.
minimizes the completion time of the task system on an
unbounded number of processors. If we ignore
communication overhead, this optimal completion time can be
simply achicved by assigning each task o a different
processor. This is not so with communication costs, since the
optimal critical path may only occur when some parallel tasks
are assigned to the same processor. It is a harder problem and
is in fact NP-co- plete.

So, we designed a greedy approximation algorithm to solve
this problem. [t begins with the trivial partition that places
each task in a separate block. It also maintains a table
DcltaCPL{ij], which represents the decrease in the critical
path length obtained by merging blocks i and j. The
algorithm theu iteratively merges the best pair of blocks - the
pair that yields the Jargest decrease in the critical path length -
and terminates when no remaining merger could possibly
reduce the critical path length (i.e. all entries in DeitaCPL are
negative).

In computing the critical path length, we [orce all tasks in
the same block to execute sequentially since they will be
assigned to the same processor. There could be several
possible task sequences consisient with the precedence
constraints, and it's for that very reason that the problem is
NP-complete. An algorithm that trics all possible scquences
will have a worst-case cxponential time. [nstcad we just use
an arbitrary topological order (priority list) to provide a
sequence for tasks in the same block. Figure 9-2 outlines the
body of procedure DectermineCompletionTime, uscd to
compute the completion time for a given partition. Because

of step 3, it has an O(N+E) worst-casz execution time, for N
tasks and E synchronization and communication edges.

Inputs: Tasks, costs, partition, priority list.
Output: Completion time,

Algorithm:

1. for each task T, do
Add non-local syochronization and communication
costs to T;'s execution time. (Use processor
component for communication)
end for

2. for each block B do
BlockTime[B) « 0
end for

3. for each task 'i'j in priority list order do
StantTime «-
max( BlockTime[Block(T j)]'
CompletionTime([i] V <i,j> € S,
CompletionTime[i] + delay component of C{i,j]
V non-local input communication C[i,j])
CompletionTime(j] « StartTime + ExecutionTimae(j]
BlockTime(Block(T ,i)] « CompletionTime(j)
end for
4. return max(CompletionTime{j] V tasks Tj)

Figure 9-2: Procedure DetermineCompletionTime

The internalization algorithm has an O(N2x(N+E))
exccution time because there are O(N?) entries in DeltaCPL.
In the worst case, E = O(N2), making this an O(N?) algorithrc.
Just like the path relation in the previous section, the critical
path can be obtained by combining critical path values cf
subgraphs, The algorithm incurs an O(N*) worst-case
exccution time at each level, but is practical for large
programs. Most programs have a small number (< 100) of
tasks at each level. We have seen programs with over 5000
nodes containing fewer than 20 tasks per level. This is
because there’s not much computation that can be expresscd
without using compound nodes. Even if there are several
simple nodes at the same level, they ofiea get merged into 4
small number of tasks, due to the granularity threshold valuc.

Though this is an approximation algorithm, we have shown
that it finds the optimal partition for a restricted class of
communication graphs, namely serics-parallel graphs.
Further, we have shown that this algorithm has a worst-case
performance bound of 2, relative to the optimal critical path.
The proofs of these results are beyond the scope of this paper.

10. Processor Assignment

With the intcrnalization pre-pass completed, the ground is
finally set for the actual assignment of tasks to processors.
Tasks in the same interalized block must be assigned to the
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same processor. We use a modified Priority List scheduling
algorithm [11] to perform the processor assignmeat. An
outline of this algorithm is given in Figure 10-1.

Inputs: Tasks, costs, internalized partition, priority list,
Output: Processor assignment for each task.

Algorithm:

1. for each task Ti do
Processor{i] «— 0
end for

2.for proc « 1toPdo
ProcessorBlock([proc] « 0
end for

3. for each task Tj in priority list order do
if Processor{j] = O then
a, for proc « 1 to P do
Call piocedure DetermineCompletionTime for

partition that merges blocks Block(Tj) and
ProcessorBlock[proc).

Set BestProc to the vatue of proc witn the
smallest completion time.
end for

b. Merge blocks Block('l‘j) and
ProcessorBlock[BestProc).
¢. ProcessorBlock{BestProc] « Block(’l‘j)
d. for each task T, with Block(T}) = Block(T j) do
Processor]i) < BestProc
end for
end if
end for
4. return Processor

Figure 10-1: Procedure Schedule

The algorithm visits tasks in priority list order, so that a
task is only scheduled after all its predecessors have been
scheduled. Processor{i] stores the processor number for task
T, Itis initialized to zero and is set when visiting the first
task in T;'s block. Like the Intcmalization algorithm,
Processor Assignment proceeds by merging blocks in the
partition. It terminates when there are at most as many blocks
as  processors. At that time, all tasks T, in
ProcessorBlock(proc] will have Processor{i] set lo proc.
Once again, we use Procedure DetermineCompletionTime to
compute the completion time for a given partition,

This algorithm has a worst-case O(Bx(N+E)) exccution
time, where B is the number of intcrnalized blocks. The
scheduling problem does not lend itsclf to an cificient divide-
and-conquer algorithin, as the path rclation and critical path
problems, because all sub-computations share the same set of
processors. Instead, its efficiency lics in being zble 10 assign
an entire block of tasks to a processor at a time.

11. Code Generation Issues

The output of the processor assignment phase consists of P
task sequences for P processors. Each task’s computation is
traaslated to sequential code, as in uniprocessor compilation.
However, synchronization primitives and communication
code for any non-local synchronizations and communications
must be appropriately placed in a prologue and epilogue for
each task. These non-local synchronizations and
communications are barricrs that must not be crossed when
optimizing and reordering instructions. Their rearrangement
could form a cycle in inter-processor synchronization and lead
to deadlock during execution. Evea if it avoided deadlock,
the schedule would be different from the one chosen by our
algorithm, and could have a lurger parallel execution time.
However, the code generator is free o reorder and oplimize
instructions that do not cross an external synchronization or
communication. There should be a large scope for such
conventional code optimizations, since we exploit outer-level
parallelism and each task can have a lot of computation buricd
inside it.

12. Preliminary Results

As mentioned earlier, a partitioner-cum-scheduler based on
these techniques has been implemented to process IF1
program graphs. We have instrumented the Livermose [F1
interpreter to provide statistics for a multiprocessor
simulation. The simulation uses processor assignments
generated by the partitioner. Execution time values are based
on actual run-time frcquencies and data sizes.

Figure 12-1 shows the speed-up obtained for the following
SISAL programs:

1. Towers of Hanoi. A program to solve the puzzle for a
tower of height 10. Graph expansion unwound the
recursive function calls to get 2 binary tree with [1g P]
levels. Hence the non-lipearity when the number of
processors is a powe; of 2,

2. Batcher's iterative merge-exchange sorting algorithm
[4) on 100 integers. This is an excellent algorithm for
parallel sorting. It consists of two nested While loops,
each with log N ilerations, and an inner Forall with N
iterations. Graph expansion successively expanded
the While bodies and finally the Forall, which contains
the parallelism.

3. Eight Queens - a recursive program to gecerate all
solutions to the B queens problem. A recursion depth
valuc of 8 directed the graph expansion algorithm 1o
expand the rccursive call to 8 levels. The Forall at
each level was then expanded.

4. Multi-precision multiplication. A divide-and<onquer
solutivn W the problem of muitiplying two N-bit
numbers {2]. The algorithm breaks cach number intw
halves, recursively finds 3 sub-products and combines
them to get the full product. Using 3 (instead of 4)
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recursive m-utiplications makes this an O(N% 3) =

O(N!9) algonthm (instcad of N2),
These speed-up curves show that compile-time processor
assignment can be successfully used to explcit parailelism.
We'd like to make similar speed-up measurements on real
machines, e.g. Sequent, Encore, iPSC. That will be possible
when the translator from IF1 to U-code is ready. Another
approach is to translate [F1 to C. We have already hand-coded
the partitioned merge-exchange sort program in C and
observed linear speed-up on the Sequeat (12 processors) and
Encore (20 processors).

Figure 12-2 iliustrates the match between a partition and its
target multiprocessor parameters. These measurements were
taken for the Towers of Hanoi program, using two sets of
target parameters that represent low and high communication
overhead. The four curves show all four combinations of the
two partitions with the two fargets. Natrally, the low
overhead target curves show a better specd-up than the high
overhead target. But, for a given target, the partition that was
geaerated for it performed better than the other partition.

Figure 12-3 shows the effect of the Iaternalization phase on
partitioning. The SISAL program used was a simple matrix
multiplication of two 20>Q0 integer matrices. The program
was partitioned and simulated for three scts of target
parameters  representing  low, medium and  high
communication overhead. Two partitions were generated in
each case - one with and one without using the Internalization
phase. As scen in the figure, the partition with [nternalization
performeed  beticr, espuiwiy for  high  comununication
overhead.

13. Related Work

As mentioned in the introduction, a compiler system for
parallel machines must deal with the problems of extracting
parallelism, partitioning the program into tasks and
scheduling tasks. The major effort so far has been in solving
the first problem. Kuck's Parafrase [13], [16] and the Rice
veclorizer (3] have been successful in extracting parallclism
from Fortran programs. Thcy have been used for vector
machines, where partitioning and scheduling is not an issue.
This parallelism is typically local, since global parallelism
(say between subroutines) is difficult to automatically extract
from a scquential language. Both these systems could be used
to produce an IFl-like graph representation that scrves as
input to our partitioner. Whether such an approach would be
effective depends on the ability of these systems to recognize
larger-grain parallclism.

The Bulldsg compiler {9] vatracis iocai paraiiciism and
schedules operations for VLIW (Very Long Instruction Word)
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architectures. Loop unrolling aud trace scheduling ars among
the techniques used to get more parallclism than that available
within basic blocks. This is simniiar in spirit 10 our task
expansion, except that we start at the outermost level and
move inwards looking for parallelism at the macro level The
Bulldog approach attempts to generate a set of synchronous,
fine-grained parallel operations that can be “packed” into a
single wide instruction word. The primary technique used to
find parallelism is local expansion of basic blocks. Our
partitioner is targeted to asynchronous multiprocessors, which
perform most efficiently with coarse-grain parallelism.

In the Hughes Data Flow Machine compiler [5]. dataflow
nodes (actors) are statically allocated to processing elements.
The allocation is based om heuristics o minimize
communication and maximize parallclism. The heunstic
functions use inter-processer distances and 2 count of parallel
actors; they do not consider the frequency count of individual
actors or the communication size of data. Static allocation of
an actor causes all its ipvocations to be sequential, since they
are executed on the same processing element. This can
reduce parallelism for an actor in the body of a Forall or in a
function called more than once in parallel. We address the
problem by task expansion, so that diffcrent sub-Forall's or
different calls to the same function can be executed on
different processors. It is necessary to du a trapsitive closure
of the dataflow graph to dctermine parallel aciors. Their
"local allocator” uses an O(N”) trapsitive closure algorithm
and took 3 VAX CPU hours to schedule 415 actors. Because
of this high cost, they use a "global allocator” to approximate
the heuristics by partitioning the graph and set of processing
clements into separate picces that can be individually handled
by the local allocator. Transilive closure is done more
efficiently in our partitioner, because we exploit the program
graph hierarchy to determine the path relation, e.g. it took
only 10 VAX CPU seconds for a program graph with over
1500 nodes.

14, Conclusions

We have demonstrated that the problem of partitioning and
scheduling parallel programs can be solved at compile-lime.
Our techniques are practical and have been implemented o
process IF1 program graphs. They rely on estimates of

frequency parameters, which we obtain from execution profile
data,

These techniques do not assume any particular
multiprocessor architccture.  Insicad, they are driven by a
table of parameicrs that describe the target multiprocessor.

The central issue in paritioning and scheduling is the
trade-off between  parallelism  and  the overhead  of
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synchtr sization and communication, We use costs to
incorpuiute these overheads in our model for multiprocessor
scheduling.

The implementation has already been used to panition
many benchmark programs, and the simulation results are
very encouraging. As more multiprocessors become
available, we will use this implementation as a basis to
compare alternative architectures and their interaction with
different application programs.
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